810=-490t^2+1260

Simple and best practice solution for 810=-490t^2+1260 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 810=-490t^2+1260 equation:



810=-490t^2+1260
We move all terms to the left:
810-(-490t^2+1260)=0
We get rid of parentheses
490t^2-1260+810=0
We add all the numbers together, and all the variables
490t^2-450=0
a = 490; b = 0; c = -450;
Δ = b2-4ac
Δ = 02-4·490·(-450)
Δ = 882000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{882000}=\sqrt{176400*5}=\sqrt{176400}*\sqrt{5}=420\sqrt{5}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-420\sqrt{5}}{2*490}=\frac{0-420\sqrt{5}}{980} =-\frac{420\sqrt{5}}{980} =-\frac{3\sqrt{5}}{7} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+420\sqrt{5}}{2*490}=\frac{0+420\sqrt{5}}{980} =\frac{420\sqrt{5}}{980} =\frac{3\sqrt{5}}{7} $

See similar equations:

| x(48-20)+46=2x(52+14) | | 48-(2+2x)=36-12x | | 48-(2+2x=36-12x | | 5x+3=12x-9 | | 46+3x=-63+8x | | 46+3=-63+8x | | (5x+5)(x+1)=0 | | 13/24(k)=0 | | 3-5x+8x=20 | | 5n+7(n+6)=6n-2(1+7n) | | 15x^2+10x=11x^2-2x | | 5n=7(n+6)=6n-2(1+7n) | | 3x+x^2+6=0 | | 25/8=31/12k | | 3(6x-2)+2x=94 | | 1712x^2-2118x+164=0 | | 49.10/2.10-5=x | | 2x-1=2x-19 | | 49.10/x-5=2.10 | | 8x-3x+2-x=13x+3 | | 8x-3x+2-x=5x+2 | | 6x+10-2x+2=0 | | p^2+p/3=1/6 | | 8x-3x+2-x=11x+2 | | 3/4x+x5/8=4x | | 9^(-x+3)=27 | | 2(120+5y)+4y=123 | | 2(123-5y)+4y=120 | | (x+6)/3=3x | | 0.4(2x+0.3)=1 3(6x−7.2) | | 4(2n-3=44 | | 2.3x=13.7 |

Equations solver categories